Severe acute respiratory syndrome coronavirus RNA-dependent RNA polymerase, also known as ...
5-932
0e+00
Severe acute respiratory syndrome coronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12, and similar proteins from betacoronaviruses in the B lineage: responsible for replication and transcription of the viral RNA genome; This group contains the RNA-dependent RNA polymerase (RdRp) of Severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 (also known as 2019 novel CoV (2019-nCoV) or COVID-19 virus), and similar proteins from betacoronaviruses in the sarbecovirus subgenera (B lineage). CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir, which shows potential for the treatment of SARS-CoV-2 viral infections. The structure of SARS-CoV-2 Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. Recent studies have shown that the SARS-CoV-2 RdRp requires two iron-sulfur clusters to function optimally. Earlier studies had mistakenly identified these iron-sulfur cluster binding sites for zinc-binding sites, likely because iron-sulfur clusters degrade easily under standard experimental conditions.The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
:
Pssm-ID: 394895 Cd Length: 928 Bit Score: 1895.96 E-value: 0e+00
Severe acute respiratory syndrome coronavirus RNA-dependent RNA polymerase, also known as ...
5-932
0e+00
Severe acute respiratory syndrome coronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12, and similar proteins from betacoronaviruses in the B lineage: responsible for replication and transcription of the viral RNA genome; This group contains the RNA-dependent RNA polymerase (RdRp) of Severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 (also known as 2019 novel CoV (2019-nCoV) or COVID-19 virus), and similar proteins from betacoronaviruses in the sarbecovirus subgenera (B lineage). CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir, which shows potential for the treatment of SARS-CoV-2 viral infections. The structure of SARS-CoV-2 Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. Recent studies have shown that the SARS-CoV-2 RdRp requires two iron-sulfur clusters to function optimally. Earlier studies had mistakenly identified these iron-sulfur cluster binding sites for zinc-binding sites, likely because iron-sulfur clusters degrade easily under standard experimental conditions.The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 394895 Cd Length: 928 Bit Score: 1895.96 E-value: 0e+00
Coronavirus RNA-dependent RNA polymerase, N-terminal; This family covers the N-terminal region ...
14-366
0e+00
Coronavirus RNA-dependent RNA polymerase, N-terminal; This family covers the N-terminal region of the coronavirus RNA-directed RNA Polymerase which corresponds to the nonstructural protein 12 (NSP12) produced by cleavage of ORF1b. NSP12 contains a polymerase domain that assumes a structure resembling a cupped 'right hand', similar to other polymerases, containing a fingers domain, a palm domain and a thumb domain. Coronavirus NSP12 also contains a nidovirus-unique N-terminal extension that possesses a kinase-like fold allowing the binding of NSP12 to NSP7 and NSP8. NSP12 possesses some minimal activity on its own, but the addition of the NSP7 and NSP8 co-factors greatly stimulates polymerase activity.
Pssm-ID: 461929 Cd Length: 353 Bit Score: 646.44 E-value: 0e+00
Severe acute respiratory syndrome coronavirus RNA-dependent RNA polymerase, also known as ...
5-932
0e+00
Severe acute respiratory syndrome coronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12, and similar proteins from betacoronaviruses in the B lineage: responsible for replication and transcription of the viral RNA genome; This group contains the RNA-dependent RNA polymerase (RdRp) of Severe acute respiratory syndrome coronavirus (SARS-CoV), SARS-CoV-2 (also known as 2019 novel CoV (2019-nCoV) or COVID-19 virus), and similar proteins from betacoronaviruses in the sarbecovirus subgenera (B lineage). CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir, which shows potential for the treatment of SARS-CoV-2 viral infections. The structure of SARS-CoV-2 Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. Recent studies have shown that the SARS-CoV-2 RdRp requires two iron-sulfur clusters to function optimally. Earlier studies had mistakenly identified these iron-sulfur cluster binding sites for zinc-binding sites, likely because iron-sulfur clusters degrade easily under standard experimental conditions.The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 394895 Cd Length: 928 Bit Score: 1895.96 E-value: 0e+00
betacoronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: ...
5-932
0e+00
betacoronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: responsible for replication and transcription of the viral RNA genome; This subfamily contains the RNA-dependent RNA polymerase (RdRp) of betacoronaviruses, including the RdRps from three highly pathogenic human coronaviruses (CoVs) such as Middle East respiratory syndrome (MERS)-related CoV, Severe acute respiratory syndrome (SARS) CoV, and SARS-CoV-2, also known as 2019 novel CoV (2019-nCoV) or COVID-19 virus. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir, which shows potential for the treatment of SARS-CoV-2 viral infections. The structure of SARS-CoV-2 Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438016 Cd Length: 925 Bit Score: 1815.92 E-value: 0e+00
coronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: responsible ...
5-932
0e+00
coronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: responsible for replication and transcription of the viral RNA genome; This family contains the RNA-dependent RNA polymerase of alpha-, beta-, gamma-, delta-coronaviruses, including three highly pathogenic human coronaviruses (CoVs) such as Middle East respiratory syndrome (MERS)-related CoV, Severe acute respiratory syndrome (SARS) CoV, and SARS-CoV-2, also known as 2019 novel CoV (2019-nCoV) or COVID-19 virus. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir, which shows potential for the treatment of SARS-CoV-2 viral infections. The structure of SARS-CoV-2 Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438015 Cd Length: 928 Bit Score: 1798.64 E-value: 0e+00
Middle East respiratory syndrome-related coronavirus RNA-dependent RNA polymerase, also known ...
6-932
0e+00
Middle East respiratory syndrome-related coronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12, and similar proteins from betacoronaviruses in the C lineage: responsible for replication and transcription of the viral RNA genome; This group contains the RNA-dependent RNA polymerase (RdRp) of Middle East respiratory syndrome (MERS)-related CoV, bat-CoV HKU5, and similar proteins from betacoronaviruses in the merbecovirus subgenera (C lineage). CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir, which has been shown to potently inhibit MERS RdRp. Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 394896 Cd Length: 931 Bit Score: 1559.25 E-value: 0e+00
Bat coronavirus HKU9 RNA-dependent RNA polymerase, also known as non-structural protein 12, ...
7-932
0e+00
Bat coronavirus HKU9 RNA-dependent RNA polymerase, also known as non-structural protein 12, and similar proteins from betacoronaviruses in the D lineage: responsible for replication and transcription of the viral RNA genome; This group contains the RNA-dependent RNA polymerase (RdRp) of bat coronavirus HKU9 and similar proteins from betacoronaviruses in the nobecovirus subgenera (D lineage). CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir. Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 394898 Cd Length: 929 Bit Score: 1512.25 E-value: 0e+00
alphacoronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: ...
5-932
0e+00
alphacoronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: responsible for replication and transcription of the viral RNA genome; This subfamily contains the RNA-dependent RNA polymerase (RdRp) of alphacoronaviruses, including human coronaviruses (HCoVs), HCoV-NL63, and HCoV-229E. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir. Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 394892 Cd Length: 924 Bit Score: 1466.10 E-value: 0e+00
human coronavirus HKU1 RNA-dependent RNA polymerase, also known as non-structural protein 12, ...
6-932
0e+00
human coronavirus HKU1 RNA-dependent RNA polymerase, also known as non-structural protein 12, and similar proteins from betacoronaviruses in the A lineage: responsible for replication and transcription of the viral RNA genome; This group contains the RNA-dependent RNA polymerase (RdRp) of human coronavirus HKU1, murine hepatitis virus, and similar proteins from betacoronaviruses in the embecovirus subgenera (A lineage). CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir. Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 394897 Cd Length: 925 Bit Score: 1440.15 E-value: 0e+00
gammacoronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: ...
5-932
0e+00
gammacoronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: responsible for replication and transcription of the viral RNA genome; This subfamily contains the RNA-dependent RNA polymerase (RdRp) of gammacoronaviruses, including the RdRp of avian infectious bronchitis virus (IBV) and similar proteins. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir. Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 394891 Cd Length: 931 Bit Score: 1331.44 E-value: 0e+00
deltacoronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: ...
6-932
0e+00
deltacoronavirus RNA-dependent RNA polymerase, also known as non-structural protein 12: responsible for replication and transcription of the viral RNA genome; This subfamily contains the RNA-dependent RNA polymerase (RdRp) of deltacoronaviruses. CoVs utilize a multi-subunit replication/transcription machinery. A set of non-structural proteins (Nsps) generated as cleavage products of the ORF1a and ORF1ab viral polyproteins assemble to facilitate viral replication and transcription. A key component, the RNA-dependent RNA polymerase (RdRp, also known as Nsp12), catalyzes the synthesis of viral RNA and thus plays a central role in the replication and transcription cycle of CoV, possibly interacting with its co-factors, Nsp7 and Nsp8. RdRp is therefore considered a primary target for nucleotide analog antiviral inhibitors such as remdesivir, which has been shown to inhibit human endemic and zoonotic deltacoronaviruses with a highly divergent RdRp. Nsp12 contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 394894 Cd Length: 928 Bit Score: 1059.46 E-value: 0e+00
Coronavirus RNA-dependent RNA polymerase, N-terminal; This family covers the N-terminal region ...
14-366
0e+00
Coronavirus RNA-dependent RNA polymerase, N-terminal; This family covers the N-terminal region of the coronavirus RNA-directed RNA Polymerase which corresponds to the nonstructural protein 12 (NSP12) produced by cleavage of ORF1b. NSP12 contains a polymerase domain that assumes a structure resembling a cupped 'right hand', similar to other polymerases, containing a fingers domain, a palm domain and a thumb domain. Coronavirus NSP12 also contains a nidovirus-unique N-terminal extension that possesses a kinase-like fold allowing the binding of NSP12 to NSP7 and NSP8. NSP12 possesses some minimal activity on its own, but the addition of the NSP7 and NSP8 co-factors greatly stimulates polymerase activity.
Pssm-ID: 461929 Cd Length: 353 Bit Score: 646.44 E-value: 0e+00
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the order Nidovirales of ...
538-892
5.34e-130
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the order Nidovirales of positive-sense single-stranded RNA [(+)ssRNA] viruses; This family contains the catalytic core domain of RdRP of Nidovirales, an order of enveloped, (+)ssRNA viruses which infect vertebrates and invertebrates. Host organisms include mammals, birds, reptiles, amphibians, fish, arthropods, mollusks, and helminths. The order Nidovirales currently comprises 88 formally recognized virus species of (+)ssRNA viruses which are classified into nine virus families: Abyssoviridae, Arteriviridae, Coronaviridae, Euroniviridae, Medioniviridae, Mesoniviridae, Mononiviridae, Roniviridae, and Tobaniviridae. Based on the genome size, the members of the order Nidovirales can be divided into two groups, large and small nidoviruses. The genomes of the large nidoviruses are well over 25 kb in length with size differences in the 5 kb range. Planarian secretory cell nidovirus (PSCNV), only member of the Mononiviridae family, has the largest known non-segmented RNA genome of 41.1 kb; its host is the planarian flatworm. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438018 [Multi-domain] Cd Length: 310 Bit Score: 393.65 E-value: 5.34e-130
catalytic core domain of RNA-dependent RNA polymerase (RdRP) in the Tobaniviridae family of ...
516-862
8.15e-34
catalytic core domain of RNA-dependent RNA polymerase (RdRP) in the Tobaniviridae family of positive-sense single-stranded RNA [(+)ssRNA] viruses; This group contains the catalytic core domain of RdRp of RNA viruses belonging to the family Tobaniviridae, order Nidovirales. Tobaniviridae RNA viruses infect vertebrates; their host organisms include mammals, fish, and snakes. Member viruses have a viral envelope and (+)ssRNA genome. The genome size of Tobaniviruses ranges from 20 to 32 kilobases. The family is the only member of the suborder Tornidovirineae. The family Tobaniviridae has four subfamilies (Piscanivirinae, Remotovirinae, Remotovirinae, and Torovirinae) and eight genera (Bafinivirus, Oncotshavirus, Bostovirus, Infratovirus, Pregotovirus, Sectovirus, Tiruvirus, and Torovirus). The Tobaniviridae family belongs to the order Nidovirales, which currently comprises 88 formally recognized virus species of (+)ssRNA viruses, which are classified into nine virus families across seven different suborders. The structure of Tobaniviridae RdRp contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438036 Cd Length: 401 Bit Score: 134.82 E-value: 8.15e-34
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the Mesoniviridae family of ...
501-894
1.63e-24
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the Mesoniviridae family of positive-sense single-stranded RNA [(+)ssRNA] viruses; This group contains the catalytic core domain of RdRp of RNA viruses belonging to the family Mesoniviridae, order Nidovirales. Member viruses have a viral envelope and (+)ssRNA genome. The family is named after the size of the genomes relative to other nidoviruses, which is intermediate between that of the families Arteriviridae and Coronaviridae, with meso- coming from the Greek word mesos, which means medium, while -ni is an abbreviation of nido. The family Mesoniviridae comprises of mosquito-specific viruses with extensive geographic distribution and host range. The family has only one subfamily, Hexponivirinae, which contains only one genus, Alphamesonivirus. There are 8 subgenera (Casualivirus, Enselivirus, Hanalivirus, Kadilivirus, Karsalivirus, Menolivirus, Namcalivirus, and Ofalivirus) and 10 species in Alphamesonivirus. The structure of Mesoniviridae RdRp contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438037 Cd Length: 424 Bit Score: 107.29 E-value: 1.63e-24
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the Medioniviridae family of ...
501-893
4.11e-18
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the Medioniviridae family of positive-sense single-stranded RNA [(+)ssRNA] viruses; This group contains the catalytic core domain of RdRp of RNA viruses belonging to the family Medioniviridae, order Nidovirales. Member viruses have a viral envelope and (+)ssRNA genome. The Medioniviridae subgenera includes Turrinivirus and Balbicanovirus. The structure of Medioniviridae RdRp contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438038 Cd Length: 391 Bit Score: 87.44 E-value: 4.11e-18
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the family Eunroniviridae of ...
538-869
1.37e-08
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the family Eunroniviridae of positive-sense single-stranded RNA [(+)ssRNA] viruses; This group contains the catalytic core domain of RdRp of RNA viruses belonging to the family Eunroniviridae, order Nidovirales. Member viruses have a viral envelope and (+)ssRNA genome. Eunroniviridae is a closely related family of crustacean nidoviruses, within the suborder Ronidovirineae, which also includes the family Roniviridae. Ronidovirineae, named "rod-shaped nidovirus", is 150-200 nm long and approximately 60 nm thick. There are 3 viral species in the Euroniviridae family, all of which have been detected in crustaceans. The structure of Euroniviridae RdRp contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438041 Cd Length: 345 Bit Score: 57.60 E-value: 1.37e-08
Viral RNA-dependent RNA polymerase; This family represents the RNA-directed RNA polymerase ...
497-783
2.03e-07
Viral RNA-dependent RNA polymerase; This family represents the RNA-directed RNA polymerase found in many positive strand RNA eukaryotic viruses. Structural studies indicate that these proteins form the "right hand" structure found in all oligonucleotide polymerases, containing thumb, finger and palm domains, and also the additional bridging finger and thumb domains unique to RNA-directed RNA polymerases.
Pssm-ID: 425815 Cd Length: 450 Bit Score: 54.34 E-value: 2.03e-07
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the family Roniviridae of ...
586-874
2.31e-04
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the family Roniviridae of positive-sense single-stranded RNA [(+)ssRNA] viruses; This group contains the catalytic core domain of RdRp of RNA viruses belonging to the family Roniviridae, order Nidovirales. Member viruses have a viral envelope and (+)ssRNA genome. The family Roniviridae includes a single genus (Okavirus) for three species of viruses (Yellow head virus, Gill-associated virus and Okavirus 1) with enveloped, rod-shaped virions. Roniviruses infect penaeid and palaemonid shrimp. Natural infections are usually without apparent clinical signs. One member of the family (yellow head virus) is highly pathogenic for shrimp. Roniviruses are most closely related to other nidoviruses infecting arthropods, including members of the families Mesoniviridae (from mosquitoes) and Euroniviridae (from crustaceans). The structure of Roniviridae RdRp contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438040 Cd Length: 379 Bit Score: 44.65 E-value: 2.31e-04
conserved catalytic core domain of RNA-dependent RNA polymerase (RdRp) from the positive-sense ...
613-767
6.91e-04
conserved catalytic core domain of RNA-dependent RNA polymerase (RdRp) from the positive-sense single-stranded RNA [(+)ssRNA] viruses and closely related viruses; This family contains the catalytic core domain of RdRp of RNA viruses which belong to Group IV of the Baltimore classification system, and are a group of related viruses that have positive-sense (+), single-stranded (ss) genomes made of ribonucleic acid (RNA). RdRp (also known as RNA replicase) catalyzes the replication of RNA from an RNA template; specifically, it catalyzes the synthesis of the RNA strand complementary to a given RNA template. The Baltimore Classification is divided into 7 classes, 3 of which include RNA viruses: Group IV (+) RNA viruses, Group III double-stranded (ds) RNA viruses, and Group V negative-sense (-) RNA viruses. Baltimore groups of viruses differ with respect to the nature of their genome (i.e., the nucleic acid form that is packaged into virions) and correspond to distinct strategies of genome replication and expression. (+) viral RNA is similar to mRNA and thus can be immediately translated by the host cell. (+)ssRNA viruses can also produce (+) copies of the genome from (-) strands of an intermediate dsRNA genome. This acts as both a transcription and a replication process since the replicated RNA is also mRNA. RdRps belong to the expansive class of polymerases containing so-called palm catalytic domains along with the accessory fingers and thumb domains. All RdRps also have six conserved structural motifs (A-F), located in its majority in the palm subdomain (A-E motifs) and the F motif is located on the finger subdomain. All these motifs have been shown to be implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides. In addition to Group IV viruses, this model also includes Picobirnaviruses (PBVs), members of the family Picobirnaviridae of dsRNA viruses (Baltimore classification Group III), which are bi-segmented dsRNA viruses. The phylogenetic tree of the RdRps of RNA viruses (realm Riboviria) showed that picobirnaviruses are embedded in the branch of diverse (+)RNA viruses; sometimes they are collectively referred to as the picornavirus supergroup. RdRps of members of the family Permutatetraviridae, a distinct group of RNA viruses that encompass a circular permutation within the RdRp palm domain, are not included in this model.
Pssm-ID: 438017 [Multi-domain] Cd Length: 73 Bit Score: 38.86 E-value: 6.91e-04
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the family Arteriviridae of ...
618-694
6.83e-03
catalytic core domain of RNA-dependent RNA polymerase (RdRp) in the family Arteriviridae of positive-sense single-stranded RNA [(+)ssRNA] viruses; This group contains the catalytic core domain of RdRp of RNA viruses belonging to the family Arteriviridae, order Nidovirales. Member viruses have a viral envelope and (+)ssRNA genome. The overall genome organization of the Arteriviruses are highly similar to the Coronaviruses; however, they lack the spike proteins of the coronaviruses. The family members include equine arteritis virus (EAV), porcine reproductive and respiratory syndrome virus (PRRSV), lactate dehydrogenase elevating virus of mice, and simian hemorrhagic fever virus (SHFV). The structure of Arteriviridae RdRp contains a RdRp domain as well as a large N-terminal extension that adopts a nidovirus RdRp-associated nucleotidyltransferase (NiRAN) architecture. The RdRp domain displays a right hand with three functional subdomains, called fingers, palm, and thumb. All RdRps contain conserved polymerase motifs (A-G), located in the palm (A-E motifs) and finger (F-G) subdomains. All these motifs have been implicated in RdRp fidelity such as processes of correct incorporation and reorganization of nucleotides.
Pssm-ID: 438039 [Multi-domain] Cd Length: 323 Bit Score: 39.55 E-value: 6.83e-03
Database: CDSEARCH/cdd Low complexity filter: no Composition Based Adjustment: yes E-value threshold: 0.01
References:
Wang J et al. (2023), "The conserved domain database in 2023", Nucleic Acids Res.51(D)384-8.
Lu S et al. (2020), "The conserved domain database in 2020", Nucleic Acids Res.48(D)265-8.
Marchler-Bauer A et al. (2017), "CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.", Nucleic Acids Res.45(D)200-3.
of the residues that compose this conserved feature have been mapped to the query sequence.
Click on the triangle to view details about the feature, including a multiple sequence alignment
of your query sequence and the protein sequences used to curate the domain model,
where hash marks (#) above the aligned sequences show the location of the conserved feature residues.
The thumbnail image, if present, provides an approximate view of the feature's location in 3 dimensions.
Click on the triangle for interactive 3D structure viewing options.
Functional characterization of the conserved domain architecture found on the query.
Click here to see more details.
This image shows a graphical summary of conserved domains identified on the query sequence.
The Show Concise/Full Display button at the top of the page can be used to select the desired level of detail: only top scoring hits
(labeled illustration) or all hits
(labeled illustration).
Domains are color coded according to superfamilies
to which they have been assigned. Hits with scores that pass a domain-specific threshold
(specific hits) are drawn in bright colors.
Others (non-specific hits) and
superfamily placeholders are drawn in pastel colors.
if a domain or superfamily has been annotated with functional sites (conserved features),
they are mapped to the query sequence and indicated through sets of triangles
with the same color and shade of the domain or superfamily that provides the annotation. Mouse over the colored bars or triangles to see descriptions of the domains and features.
click on the bars or triangles to view your query sequence embedded in a multiple sequence alignment of the proteins used to develop the corresponding domain model.
The table lists conserved domains identified on the query sequence. Click on the plus sign (+) on the left to display full descriptions, alignments, and scores.
Click on the domain model's accession number to view the multiple sequence alignment of the proteins used to develop the corresponding domain model.
To view your query sequence embedded in that multiple sequence alignment, click on the colored bars in the Graphical Summary portion of the search results page,
or click on the triangles, if present, that represent functional sites (conserved features)
mapped to the query sequence.
Concise Display shows only the best scoring domain model, in each hit category listed below except non-specific hits, for each region on the query sequence.
(labeled illustration) Standard Display shows only the best scoring domain model from each source, in each hit category listed below for each region on the query sequence.
(labeled illustration) Full Display shows all domain models, in each hit category below, that meet or exceed the RPS-BLAST threshold for statistical significance.
(labeled illustration) Four types of hits can be shown, as available,
for each region on the query sequence:
specific hits meet or exceed a domain-specific e-value threshold
(illustrated example)
and represent a very high confidence that the query sequence belongs to the same protein family as the sequences use to create the domain model
non-specific hits
meet or exceed the RPS-BLAST threshold for statistical significance (default E-value cutoff of 0.01, or an E-value selected by user via the
advanced search options)
the domain superfamily to which the specific and non-specific hits belong
multi-domain models that were computationally detected and are likely to contain multiple single domains
Retrieve proteins that contain one or more of the domains present in the query sequence, using the Conserved Domain Architecture Retrieval Tool
(CDART).
Modify your query to search against a different database and/or use advanced search options